不用快播看簧片的网址

博客专栏

EEPW不用快播看簧片的网址 > > CVPR2022:使用完全交叉Transformer的小样本目标检测

CVPR2022:使用完全交叉Transformer的小样本目标检测

发布人:时间:2022-08-20来源:工程师

图片

论文地址:

http://openaccess.thecvf.com/content/CVPR2022/papers/Han_Few-Shot_Object_Detection_With_Fully_Cross-Transformer_CVPR_2022_paper.pdf



01

概述


小样本目标检测 (FSOD) 旨在使用很少的训练示例检测新目标,最近在社区中引起了极大的研究兴趣。已经证明基于度量学习的方法使用基于双分支的孪生网络对这项任务有效,并计算图像区域和少样本示例之间的相似性以进行检测。然而,在之前的工作中,两个分支之间的交互只限于检测头,而剩下的数百层用于单独的特征提取。受最近关于视觉转换器和视觉语言转换器的工作的启发,研究者提出了一种新颖的基于完全交叉转换器(Fully Cross-Transformer)的FSOD模型 (FCT),方法是将交叉转换器整合到特征主干和检测头中。提出了非对称批处理交叉注意来聚合来自具有不同批处理大小的两个分支的关键信息。新模型可以通过引入多级交互来改善两个分支之间的少样本相似性学习。PASCAL VOC和MSCOCO FSOD基准的综合实验证明了我们模型的有效性。

02

背景


以往小样本检测方法大致可以分为俩类:single-branch方法two-branch方法;前者通常是基于Faster RCNN进行finetuned,需构建multi-class classifier;但该方法针对shot比较少例如1-shot时,较为容易出现过拟合情况;而后者通常时构建siamese网络,分别同时提取query特征和support特征,然后基于metric learning方法比如feature fusion,feature alignment,GCN或者non-local attention来计算俩分支的相似性,由于在Novel类别上无需构建multi-class classifier,所以泛化性更好;俩类方法大致差异如下图所示:

图片


03

新框架


Task Definition

在小样本目标检测(FSOD)中,有两组类C=Cbase∪Cnovel和Cbase∩Cnovel=∅,其中基类Cbase每个类都有大量训练数据,而新类Cnovel(也称为支持类)只有每个类的训练示例很少(也称为支持图像)。对于K-shot(例如,K=1,5,10)目标检测,研究者为每个新类别c∈Cnovel准确地使用K个边界框注释作为训练数据。FSOD的目标是利用数据丰富的基类来协助检测少样本的新类。

Overview of Our Proposed Model (FCT)

研究者认为以往的two-branch方法只关注了detection head部分的特征交互,忽略了特征提取部分;于是这篇论文的motivation就出来了。因此研究者在Faster RCNN上提出了Fully Cross-Transformer(FCT)的小样本检测方法,在每个阶段都进行特征交互。如下图所示:

图片

The Cross-Transformer Feature Backbone

在cross-transformer中计算Q-K-V attention时为了减少计算量,研究者采用了PVTv2的方式。上面大致介绍了query和support特征提取,在特征交互上作者提出了 Asymmetric-Batched Cross-Attention。具体做法如下图和公式所示:

图片

图片


评论。研究者彻底研究了提出的模型中两个视觉分支之间的多层次交互。cross-transformer特征主干中的三个阶段使两个分支与低级、中级和高级视觉特征逐渐有效交互。

The Cross-Transformer Detection Head

在detection head部分,和以上操作相反,在每张query上提取完proposal之后经过ROI Align可以得到ROI特征fpRBpHWC3,其中Bp=100,为了减少计算复杂度还是对support进行ave操作fs=1BsBsfs,fsR1HWC3,然后使用Asymmetric-Batched Cross-Attention计算俩分支attention,不同的是,query分支Bp1 and Bs=1 。

04

实验


图片

从上面表格的(c-d)俩行可以看出,使用三阶段训练在2-shot、10-shot上均有提升。

图片

图片


*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。


关键词: AI

相关推荐

技术专区

关闭